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Abstract Two dimensional Cartesian and axially­
symmetric problems in electrostatics or magnetostatics 
frequently are solved numerically by means of relaxation 
techniques employing, for example, the program 
POISSON. In many such problems the "sources" (charges or 
currents, and regions of permeable material) lie exclusively 
within a finite closed boundary curve and the relaxation 
process in principle then could be confined to the region 
interior to such a boundary n provided a suitable boundary 
condition is imposed onto the solution at the boundary. This 
paper discusses and illustrates the use of a boundary 
condition of such a nature, in order thereby to avoid the 
inaccuracies and more extensive meshes present when 
alternatively a simple Dirichlet or Neumann boundary 
condition is specified on a somewhat more remote outer 
boundary. 

INTROOUCTION 

The proposed boundary condition may be illustrated 
most simply by specific use of plane-polar coordinates. 
Thus, with a circular boundary so located that no external 
sources are present, the potential function external to that 
boundary is expressible in the form 

c + i= r-m (c cos me + Sm sin IT'B) . 
o m=1 m 

in which no positive powers of r occur. Such a relation 
will permit one to extend the potential to a surrounding 
concentric circle of somewhat larger radius. If, in practice, 
values of. potential are known at only a finite number of 
points on the inner circle, then of course only a finite 
number of harmonic coefficients (Cm,Sm) could be 
evaluated for such trigonometric representation of the 
potential function -- such a trigonometric series may, 
however, be adopted to provide adequate estimates of the 
corresponding values of potential at various points on a 
near-by surrounding "outer-boundary curve". 
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lllustration of inner and outer circular boundary 
curves. 

In performing a rela)(ation computation on a mesh 
bounded by such a pair of curves (e)(ternal to all "sources"), 
any full relaxation pass through the mesh may be followed 
by a step wherein the values of potential at points on the 
outer boundary are revised (up-dated) on the basis of a 
harmonic description of the potential function on the inner 
curve. Such revised values would then be employed, as 
boundary values, in proceeding with the ne)(t relaxation pass 
through the mesh. [An analogous procedure of course would 
be followed if one were to adopt an elliptical coordinate 
system (u,v), for which harmonic terms would be of the 
form e - mu times circular functions of argument mv.] 

In the work summarized here, we have made a 
practical application of the techniques just described, with 
particular application to the use of the rela)(ation program 
POISSON as applied to the design of superconducting 
magnets for advanced particle accelerators. It is evident 
that in such work one takes advantage of such intrinsic 
symmetries as may be present in the geometrical 
configuration and current distribution for the problem of 
interest. One realizes also that, in practice, there may be a 
large number of mesh points along the inner (circular) curve 
whereon one constructs a harmonic representation of the 
potential and (especially for circular boundaries) such points 
may have a quite unequal spacing. Under such 
circumstances it may well be e)(pedlent, as we indicate, to 
base the analysis on a restricted number of trigonometric 
coefficients and to compute these coefficients by a 
weighted least-squares evaluation of the data. 

In the following section we present the equations 
introduced into our operating POISSON program - - for 2-D 
Cartesian problems within circular or elliptical boundaries 
and for axially-symmetric problems with boundaries defined 
by polar or prolate spheroidal coordinates. These techniques 
apply explicitly to magnetostatic problems, but it will be 
evident that analogous methods would be applicable for 
solution of similar problems in electrostatics. This material 
is followed by some illustrative e)(amples. 

ANALYSIS 

Consider the case where a circular arc of radius 
r '" R - H divides space into two regions, an inner one 
which includes all current sources and magnetic iron, and an 
outer one which is in free space (hereafter referred to as 
the "universe"). Since the free space region is infinite we 
shall arbitrarily limit it by the second circular arc of radius 
r '" R. Each of the circular arcs is an assembly of 
connecting mesh points such as are generated by the 
program LATTICE. If we know the vector potential for 
each mesh point on r = R - H (e.g. calculated by 
POISSON), we would like to find the vector potential at 
each mesh point on r = R, so that such values may be 
employed as provisional boundary values in a subsequent 
relaxation pass through the entire mesh. This is expressed 
as: 

Aouter 
k 

N 
= L: E A1nner 

n-=l kn n 
(1 ) 

A is the vector potential, E is a working matrix, and 
the summation is over aU mesh points of the inner arc. 

In the free space region the vector potential can be 
expressed as a sum of harmonic terms, each employing 
powers of l/r. 
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(2) 

The vector potential Ai of mesh point 1 on the 
circular arc r is expressed in terms of a series of 
functions F.de), their coefficients Ot. and the problem 
type symmetry Q£.: 

Summing over the N boundary points on the radius r, 
the difference between the calculated vector potential 
values and the relaxed ones 1s minimized with respect to Dg, . 

Min: 1 
2 t ( 3) 

1-1 

The number of harmonic terms has been reduced to m and 
the weight factors Wi have been introduced to take care of 
an uneven distribution of mesh points along the boundary. 

Following the minimization process we arrive at: 

(4 ) 

where: 

1 , j - 1 , 2, 3 ... m 

N 

Vi - L: Wn F 1 (9n) An 
n::1 

Solving for OJ on the inner arc r '" R - H we get 

m 
L: (5 ) 
1-1 

Using (2) on the outer arc r => R and substituting the 
expressions for OJ and Vi we arrive at (1) 

where 

m m 
Ekn - L: L: 

1-1 j-1 

Aouter _ 
k -

N 
L: 

0=1 

We put an arbitrary upper limit on the number of 
harmonics m ~ 50. 

Two Dimensional Case with Plane-Polar CoordInates 

The harmonic functlons FR,(a) are a combination of 
the trigonometric functions SIN and COS. It is, however, 
convenient to express them in the following way 

0 1 and 61 
d1vis1on. 

Fl (S) = cos (ala - 61 ~) 
l l l-1 

are 0 1 = 2 and 61 = 2 - --2-- by integer 

Two Dimensional Problems with Elliptic Cylindrical 
'Coordinates 

We replace the two circular arcs with two confocal 
ellIpses and employ elliptic cyllndrical coordinates. 

2 

Fl (v) = cos (Ol V - 61 ~) 

a and b are the semi-axes and v = tan-1[(y/x)/(b/a)]. 

Axially-Symmetric Problems with Polar Coordinates 

Here we consider cases which possess symmetry with 
respect to revolution around the Z axis. In a cylindrical 
geometry the flux lines are represented by the product p A~ , 
where p = r sin a. The program POISSON is written In 

such a way that this product is the quantity that is being 
relaxed. 

sin a P 1 (cos a) 
· l 

-1 ~ cos a ~ 1 

1 
Pn(u) are the associated Legendre functions. 

Fig. 2(a) -

~~ ~~ 

ia 
Flux lines from POISSON relaxation of two 
dimensional Cartesian problems for structures 
of various multipole orders and various 
symmetries. 

Fig. 2(b) - Flux lines for a two-dimensional Cartesian 
problem computed by POISSON, using both a 
circular and an elliptical boundary. The 
results were found to be in good agreement 
with analytical calculations. 
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Fig. J(a) -

Fig. J(b) -

Flux lines computed for an sse dipole 
(Reference Design A). Only lines that leak out 
from the iron have been selected for plotting. 

'""" "" 

Plot similar to Fig. 3(a), showing flux lines 
computed for an sse quadrupole. 

Axially-SymmetrIc Problems with Prolate SpheroIdal 
Coordinates 

We replace the circular arcs with two confocal 
ellipsoids. It then becomes permissibLe to introduce terms 
In a development of A.p that involve 

s1nv P 1( C05V) 
a £ 
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Fig. 4(a) -

Fig. 4(b) -

Flux lines computed for axially-symmetric 
so lenoidal windings of various symmetries, 
surrounded by a ferromagnetic shield. 

Flux lines fOf windings of axial symmetry. as 
computed by POISSON by alternative use of 
circular and elliptical boundaries. The results 
were found to be In good agreement with 
analytical ca lcu lations. 

Hc.1 ('Iouter) 

Hc.j('I1nner) 
;t 
c 

Hn( 'I) is a normalized funct4ln derived from the 
associated Legendre f~nc2ion On ( 'I) • 'I is the 
eccentricity, and c .. (a -b )1 /2 . [The functions Hn('I) 
are evaluated in practice by the iteration (downward in n) of 
a recursion relation cited in LBL- 18798 and by application 
of the normalization condition Ho( 'I) = 1.] 



SUPERPOSITION 

The preceding analysis was based on the assumption 
that no sources are present outside the boundary 
introduced. This condition can be waived by incorporating 
superposition Into the relaxation process In such a way that 
solutions to magnetic problems which are affected by an 
outside field (such as the earth's magnetic field) can be 
obtained. Such solutions are also possible in the area of 
hydrodynamics, using similarities In the physical laws that 
govern electromagnetism and incompressible lnviscid 
hydrodynamics. 

We have introduced a combination of superposition and 
boundary condition into the relaxation process of POISSON 
In such a manner that solutions can be obtained to magnetic 
problems placed In a background field, as well as to 
two-dimensional hydrodynamic problems Involving potential 
flow and circulation. The matrix Ekn in (1), which takes 
care of the geometry and symmetry, is based on the 
assumption that no sources exist outside the boundary. If 
we now assume that outside sources are present and their 
vector potential function ASource Is known, we can define 
on the inner boundary a "superposed" vector potential 
ASuper that arises solely from sources interior to this 
boundary. 

ASuper- inner _ A inner _ Asource-1nner (6) 
k k k 

Note that ASource-inner is known and Alnner has been 
calculated by the relaxation process. 

The next step is to update the values of the vector 
potential on the outer boundary according to: 

Aouter 
k 

N 

- L: Ek n=l n 
ASuper-1nner + ASource-outer 
n k 

(7) 

Once the outer boundary has been updated the relaxation 
process Is permitted to resume, relaxing the enUre mesh 
before executing relations (6) and (7) once more. This 
process is continued until convergence Is obtained. The 
vector potential of both a uniform field and a source is 
expressed as 

Asource 
~ (Ux sin e - Uy cos 9) r + fin r 

Ux• Uy are the magnitudes of the field (or fluid velocity) in 
the x and y directions at infinity; r specifies the source 
strength (circulation in hydrodynamics). 

Fig. 5 - Uniform vertical field over an Lron ringj top )i = 
la, bottom )i = realistic field-dependent function. 
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Fig. 6(a) -

Fig. 6(b) -

Uniform horizontal flow over a cylinder with 
circulation [r/(RU) • 2]. 

Uniform horizontal flow over an airfoil, r = 
0.6. 

[Note that such terms were not permitted previously 
for solutions of Laplace's equation in the external region.] 

INNER BOUNDARY 

Our analysis so far has been based on the introduction 
of an outer boundary that serves to reduce the calculable 
space to a small region of interest. Analogous methods 
could serve to exclude a source-free region interior to the 
region of interest. One such application Is a small 
accelerator ring where the usual Cartesian solution of a 
magnet cross-section no longer would be strictly valid and 
an axially-symmetric geometry would be appropriate. 

ouil!T univI!Tse 

boundaries 

.i nner u nivI!Tse 

ULI!6- JL" 

Fig. 7 - An axially-symmetric geometry with possible 
outer and inner boundaries. 
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